
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 4, May 2007

Real-Time Planning and Control of Army UAVs Under
Uncertainty

Darryl K. Ahner∗
U.S. Army TRADOC Analysis Center, Monterey, USA

With advances in sensor technology and data fusion used in military operations, more
information is available for decision making. A key question is how to make effective use
of this information. Higher level sensors cue lower level sensors, in this case unmanned
aerial vehicles (UAVs), to indicate potential target arrivals. Given probability distributions of
these target arrivals, simulation and mathematical programming are used within a dynamic
programming framework to determine control strategies for UAVs. An adaptive dynamic
programming methodology is presented for the a uniform travel time UAV planning and con-
trol problem. Special structure of a network assignment problem is exploited to recursively
update functional approximations representing future rewards through the network assign-
ment problem’s subgradient information. We develop an approximate dynamic approach to
real-time planning and control of unmanned aerial vehicles with a focus on accounting for
stochastic arrivals of new tasks. Experimentation demonstrates the use of this method and
its potential for providing quick real-time controls for UAVs. Approaching the UAV routing
problem using Adaptive Dynamic Programming offers a tractable framework in which to
solve these difficult problems.

Nomenclature
bk

t Network supply/demand vector at time t iteration k

Ct(St , ut) Reward at time t given St and ut

D−
i negative directional derivative by decrementing amount at node i

D+
i positive directional derivative by incrementing amount at node i

f1(), f2() Functions for state dynamics
ht History of information at time t

IL
t indicator function equal to 1 if task has not yet arrived and 0 otherwise

Jt () Value-to-go function
J u

t () Value-to-go function
J set of physical locations/nodes in the network
Jt set of physical locations/nodes in the network where vehicles are located at time t

Jt+1 set of physical locations/nodes in the network indexed by i and j where vehicles can
move to at time t + 1 given Jt

J̃ n,ut () Approximation of value-to-go function at iteration n

Received 17 August 2006; revision received 8 February 2007; accepted for publication 8 February 2007. Copyright © 2007
by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.∗ Analyst, TRADOC Analysis Center-Monterey, Naval Postgraduate School, P.O.Box 8695, Monterey, CA 93943, and AIAA
Member. darryl.ahner@us.army.mil.

798

AHNER

Lt vector of tasks available at time t but before new arrivals in L̂t are added to the system
Le

t tasks that expire at time t because they were served
L+

t set of all tasks available to be serviced at time t

L̂t vector of tasks that arrive at time t

L̂it number of tasks that first become available at location i at time t

Nk
t arc-incidence matrix at time t iteration k

rit the reward received at location i by vehicle k at time t

Rt vector of vehicles over the set Jt

Rit number of vehicles available at location i at time t

S State space of the system
St ∈ S State at time t

Su
t Post-decision state at time t

s ′ ∈ S A given state in the state space
T number of planning periods in the planning horizon
T = {0, 1, . . . , T } times at which decisions are made
ut Decision at time t

vn
it Subgradient estimates

Wn Exogenous information sample for all time periods
Wt Exogenous information first known at time t

Yj Random variable for task arrival j

α Smoothing factor
πn

it the dual values at iteration n and time t for node i

ṽk
it estimate marginal value of one more resource at node i at time t iteration k

ξt Linear functional estimate at time t

Subscript
t Time

I. Introduction

WITH advances in sensor technology and data fusion used in military operations, more information is available
for decision making. A key question is how to make effective use of this information. One specific area the

Army has funded is the development of Unmanned Aerial Vehicles (UAVs) as part of its Future Combat Systems
(FCS). These UAVs use information from higher level sensors as cues. With this information probability distributions
can be developed to represent the possibilities of new enemy targets within a military units area of operations.

In this paper, we consider routing and scheduling of UAVs in a dynamic stochastic environment motivated by
surveillance operations. Unlike standard routing and scheduling problems, the problems associated with UAVs in
surveillance operations involve uncertain effects such as the risk of UAV loss and arrival of new tasks. In addition to
addressing these uncertain effects, the decisions must be made in real time. This research provides decision support
to military systems under development such as the Future Combat System (FCS) through planning and control of
UAVs that perform the reconnaissance, surveillance, and target acquisition (RSTA) mission. FCS is the proposed
approach of conducting future Army ground operations, integrating automated and human elements. UAVs and their
efficient use are critical in this approach. UAVs perform the dirty, dull, and dangerous surveillance missions that
enable Army ground operations to have less armor and to be more mobile.

Previous UAV research on planning and control of UAVs in Air Force operations use techniques5,14 which are
similar to vehicle routing problems, in that, an entire plan can be constructed from the start of the mission to completion
of the mission and computation can take from one to several hours without impacting the mission. Targets or areas of
interest tend to be less mobile. While replanning may occur if new information is received, replanning is not always
required. When replanning is required in Air Force operations, the amount of time to replan allows planning of a
complete schedule using known vehicle routing techniques. In contrast, Army tactical operations are more dynamic
and the value of planning missions from their beginning to completion is much less useful because the state of the
system is constantly changing, sometimes in unpredictable ways. Tasks may move, new tasks may arrive, tasks may

799

AHNER

leave without being serviced, and UAVs may be lost. These changes are compounded by the limited fuel and limited
time on station of Army UAVs. Decisions must be made within a maximum of a few minutes to account for the
rapidly changing state of the battlefield and preserve fuel. In contrast to previous work on stochastic scheduling,
the state is much more dynamic and UAVs may have a short term plan for the next couple of locations to visit
or tasks to be completed. The plan changes often and must be updated in near real-time. Such problems can be
formulated as dynamic scheduling problems under uncertainty, and can be solved in principle by stochastic dynamic
programming techniques. However, due to the size and complexity of the state space in these problems, dynamic
programming becomes intractable. In this paper, we develop an approximate dynamic programming approach using
forms of model predictive control. In model predictive control, current control actions are determined at each time by
solving a finite horizon control formulation based on the current state. As new information is acquired, the problems
are reformulated and solved to obtain revised controls. While model predictive control has developed substantially
since its introduction in the late seventies, this appears to be the first application of model predictive control for UAV
planning and control under uncertainty and is clearly the first time that adaptive dynamic programming has been
applied to the UAV planning problem.

The goal of this approach is to develop new computationally feasible and near-optimal scheduling solutions
for UAVs operating in surveillance operations where adaptations can be made in real time to new information. The
approach addressed here includes models with uncertain task arrivals; we develop a new formulation based on models
for package pickup and delivery problems. Adaptive dynamic programming uses an “approximate” future reward
function within the dynamic programming framework. Often this approximate reward function is constructed through
simulation. In this paper, we develop a class of simulation-based algorithms that iteratively learn piece-wise linear
cost-to-go approximations that can be used in adaptive dynamic programming to generate fast optimal strategies.
Specifically, we develop these algorithms using adaptive dynamic programming using a post-decision state. It is
these fast strategies that lend themselves to real-time applications.

II. Adaptive Dynamic Programming and Dynamic Programming Using a Post-Decision State
In this section we develop a problem formulation to consider probabilistic models of future tasks arrivals. To

address this we develop a stochastic programming formulation that allows for real time observation of new task
arrivals, and develop a new class of solution algorithms based on approximation techniques known as adaptive
dynamic programming.12

Adaptive dynamic programming has grown out of a series of articles involving solutions of multistage stochastic
programming problems. It has been used in diverse applications such as: vehicle dispatching,9 multi-product lot
sizing,10 fleet management,7 and the dynamic assignment problem.15 Adaptive dynamic programming mitigates the
computational problems of stochastic dynamic programming: it deals with large state spaces through value function
approximation, large outcome spaces through Monte Carlo sampling, and large action spaces through solution of
network problems within the dynamic programming recursion.

We develop the post-decision state dynamic programming recursion and prove its equivalence to the well-known
pre-decision dynamic programming recursion.3 We use this post-decision state dynamic programming recursion to
develop an adaptive dynamic programming algorithm as presented by Powell.7 Finally, we formulate a one-step travel
time UAV routing problem with stochastic target arrivals as a post-decision state dynamic programming problem
and develop the techniques needed to solve this multistage stochastic programming problem.

Consider a finite space and discrete time horizon dynamic programming problem. Let S be the state space of the
system. The finite time horizon is t = 0, . . . , T . The state St ∈ S represents the state at time t = 0, . . . , T . A decision
ut that acts on the system is selected from a finite set U at each time step. The state evolves according to a state
equation which has the form

St+1 = f1(St , ut , Wt) (1)

where f1 is a function describing the system dynamics, St includes the tasks yet to be done and UAV location, and
Wt are the new task arrivals up to time t . The decision variable u determines which UAV will be assigned to a task
or potential task if the task arrival is a random event. The dimensionality of u consists of the number of UAVs times
the number of tasks or potential tasks.

800

AHNER

A policy is a mapping �(St) : St → U that determines a decision as a function of the state, i.e. ut = �(St). We
represent the one-period contribution to the reward as Ct(St , ut). We express the T -stage value to be maximized as
the expected value of the summation of the T costs:

max
π∈�(St)

E

{
T∑

t=0

Ct(St , ut)|S0

}
(2)

Looking at this stochastic problem, new task arrival information becomes available after the decisions at time t , ut ,
are made. This exogenous information, Wt , becomes available before the state variable St+1 is measured. Therefore,
the history of information is

ht = (S0, u0, W0, S1, u1, W1, . . . , ut−1, Wt−1, St) (3)

Let Ct(St , ut) be the contribution received in period t given the state St and decision ut . The information that
arrives time t is Wt , a random variable generated with a known probability distribution. It is well known that problems
of the form given in equation (2) can be solved by Bellman’s optimality equations:2

Jt (St) = max
ut

Et {Ct(St , ut) + Jt+1(St+1(St , ut , Wt))|St } (4)

Jt (St) is commonly referred to as the value-to-go. Equation 4 requires us to take into account the impact of current
decisions on future decisions which depend on future policies. As shown in [16], given �t is the outcome space at
time t , we can write the expectation as

Et {Jt+1(St+1(St , ut , Wt))|St } =
∑
s ′∈S

∑
Wt∈�t

P (Wt)1s ′=f1(St ,ut ,Wt)Jt+1(s
′) (5)

= max
ut

Ct (St , ut) +
∑

s ′∈St+1

p(s ′|St , ut)Jt+1(s
′) (6)

where S is the set of potential states. The one-step transition matrix letting p(s ′|St , ut) = the probability the system
will be in state s ′ given that the current state is St and we take action ut . Then our optimality equations are:

Jt (St) = max
ut

Ct (St , ut) +
∑

s ′∈St+1

p(s ′|St , ut)Jt+1(s
′) (7)

Therefore, if Jt+1(s
′) were known, we would have to sum over the entire outcome space followed by the maximization

over ut .
As an alternative, consider a post-decision state Su

t at time t . The post decision state evolves according to a state
equation which has the form

Su
t = f2(St , ut) (8)

where f2 is a function describing the post-decision state dynamics. This post-decision state is the state that is acted
upon by a decision ut but has not yet been acted upon by the exogenous information process, Wt . The post-decision
state is therefore a function of the state at time t , St , and the decision at time t , ut . We rewrite our his history of
information as

ht = (S0, u0, S
u
0 , W0, S1, u1, S

u
1 , W1, . . . , ut−1, S

u
t−1, Wt−1, St)

In,13 noting that St+1 is a function of Su
t and Wt , it is shown that if the dynamic programming recursion is written

around the post-decision state we obtain the post-decision version of Bellman’s equation:

J u
t (Su

t) = Et {max
ut+1

Ct+1(S
u
t , Wt , ut+1) + J u

t+1(S
u
t+1)|Su

t } (9)

where the value function is indexed with the superscript u to denote the calculation from a post-decision state. Note
that writing the function in terms of the post-decision state allows the expectation to move outside the maximum

801

AHNER

operator which is a property that we will exploit later. Since the expectation is conditioned on Su
t , the information

Wt is needed in order to compute ut+1.
The post-decision state variable requires the solution of a maximization problem within an expectation. The

decision function is now given by

ut+1 = arg max
ut+1

Ct+1(S
u
t , Wt , ut+1) + J u

t+1(S
u
t+1(St+1, ut+1)) (10)

Define the transition functions

St = f3(S
u
t−1, Wt−1)

Su
t = f2(St , ut)

Then the optimality equations for the post-decision state variable are given by

J u
t (Su

t) = Et {max
ut+1

Ct+1(S
u
t , Wt , ut+1) + J u

t+1(f2(f3(S
u
t , Wt), ut+1))|Su

t } (11)

For notational convenience use Su
t+1 in place of f2(f3(S

u
t , Wt), ut+1) with the realization that it is a function of

(Su
t , Wt , ut+1). We refer to the set of equations given by Equation (11) as the post-decision optimality equations.
In principle, an optimal policy is found by first numerically solving Bellman’s equation and then computing the

optimal policy using the resulting value function. However, this requires computation and storage of J u
t (Su

t) for each
post-decision state which is generally not feasible for combinatorial problems.

In the following theorem, we show the equivalency of the post-decision Bellman equations with the more traditional
Bellman equations.

Theorem 1. The post-decision Bellman equation is equivalent to the Bellman equation in traditional dynamic
programming. Given

Jt (St) = max
ut

Et {Ct(St , ut) + Jt+1(St+1)|St } (12)

and

J u
t (Su

t) = Et {max
ut+1

Ct+1(S
u
t , Wt , ut+1) + J u

t+1(S
u
t+1)|Su

t } (13)

Then

J u
t (Su

t) = Et {Jt+1(St+1)|Su
t } (14)

Proof : As shown in [1] the optimal T -stage value is generated after T iterations of Bellman’s equation:

Jt (St) = max
ut

Et {Ct(St , ut) + Jt+1(St+1(St , ut , Wt))|St }

We note that St = f3(S
u
t−1, Wt−1) and substitute

Jt (S
u
t−1, Wt−1) = max

ut

Et {Ct(S
u
t−1, Wt−1, ut) + Jt+1(S

u
t , Wt)|Su

t−1, Wt−1}

Jt (S
u
t−1, Wt−1) = max

ut

Ct (S
u
t−1, Wt−1, ut) + Et {Jt+1(S

u
t , Wt)|Su

t−1, Wt−1}

Note that St = f3(S
u
t−1, Wt−1) and Su

t = f2(St , ut). Thus we can add Su
t to the conditioning.

Jt (S
u
t−1, Wt−1) = max

ut

Ct (S
u
t−1, Wt−1, ut)

+ Et {Jt+1(S
u
t (Su

t−1, ut , Wt−1), Wt)|Su
t−1, Wt−1, S

u
t }

802

AHNER

Letting Su
t = f2(St , ut) the equation reduces to

Jt (S
u
t−1, Wt−1) = max

ut

Ct (S
u
t−1, Wt−1, ut) + Et {Jt+1(S

u
t (Su

t−1, ut , Wt−1), Wt)|f2(St , ut)}

Taking the conditional expectation of both sides with respect to Su
t−1

Et {Jt (S
u
t−1, Wt−1)|Su

t−1} = Et {max
ut

Ct (S
u
t−1, Wt−1, ut)

+ Et {Jt+1(S
u
t (Su

t−1, ut , Wt−1), Wt)|f2(St , ut)}|Su
t−1}

Defining J u
t (Su

t) = Et {Jt+1(S
u
t , Wt)|f2(St , ut)} and substituting yields

J u
t−1(S

u
t−1) = Et {max

ut

Ct (S
u
t−1, Wt−1, ut) + J u

t (Su
t)|Su

t−1}

Therefore, the pre-decision and post-decision optimality equations are equivalent.

The equivalency of the post-decision Bellman equations with the more traditional Bellman equations is important
because the optimality of the pre-decision optimality equations is proven.2,16 The equivalency of the post-decision
optimality equations also result in an optimal solution if the exact function J u

t (Su
t) is known.

III. The General Adaptive Dynamic Programming Algorithm
Godfrey and Powell7 introduce an adaptive dynamic programming algorithm for stochastic dynamic resource

allocation problems. Consider the general problem as defined in section II where the new task arrival information,
Wt , is independent of the decision vector ut and the state St . Furthermore, let these arrivals represent the arrival of
tasks to the system. Assume we have an approximation of the value-to-go function J̃ n−1

t (Su
t) where n is the current

iteration. Given a realization {W̃0, W̃1, . . . , W̃T −1}, we compute u0 according to

u0 = arg max
u0∈U0

C0(S0, u0)) + J̃
u,n−1
1 (Su

0 (u0)) (15)

we can use a forward algorithm recursively from time t = 1, . . . , T − 1 to compute S1, u1, . . . according to

ut = arg max
ut∈Ut

Ct (S
u
t−1, W̃t−1, ut)) + J̃

u,n−1
t+1 (Su

t (ut)) (16)

where Ut represents the feasible control space given by the state dynamics. This is possible since given
{W̃0, W̃1, . . . , W̃T −1} all information is known to solve equation 16 as a deterministic problem which is then used to
update the approximation J̃

u,n−1
t+1 (Su

t (ut)) for the next sample of {W̃0, W̃1, . . . , W̃T −1}.
We can use the sequence of decisions selected for a given sample path of task arrivals, the associated reward values,

and subgradient information to update our approximation of the value-to-go function. We outline the algorithm below:
We call the following algorithm the general adaptive dynamic programming algorithm because it only shows the

overall procedure and not the specifics of how J̃ n−1
t (Su

t) is updated which is problem dependent.
Step 0 Initialization: Initialize J̃ 0

t , t = {0, . . . , T }, Set n=0
Step 1 Do while n ≤ N : Choose Wn ∈ � where Wn is a single sample realization of task arrivals.
Step 2 Do for t = 0, 1, . . . , T − 1:

2a Solve

ut = arg max
ut∈Ut

Ct (S
u
t−1, ωt−1, ut)) + J̃

u,n−1
t+1 (St+1(ut))

2b Update the state St = f3(S
u
t−1, ωt−1).

2c Update the value function approximation J̃ n−1
t (Su

t) using information collected from the optimization in
step 2a (Defined in sectionV subsectionA for the uniform travel time problem. Update is through eqn (55).)

Step 3 Return J̃ u,N and use it to select u0

803

AHNER

This algorithmic approach is similar to approximate dynamic programming as shown by Bertsekas and Tsitsiklis.4

Our approach differs in two main ways. First, the post-decision state and a single Monte Carlo sample are used rather
than sampling a number of forward trajectories as part of an updating process. Second, the approximate value function
is updated after each Monte Carlo sample.

The general adaptive dynamic programming algorithm must be tailored for the traits of a specific problem.
Important issues are the form of the value-to-go approximation, the solution method used to solve the recursion in
equation (16), and the methods used to update the value-to-go approximation. In the next sections we explore use of
adaptive dynamic programming for problems that relate to the routing of UAVs.

IV. Adaptive Dynamic Programming With Uniform Travel Time
In this section, we consider vehicles that travel between locations and service tasks. These tasks may be already

at the location or may arrive at some future time characterized by a probability distribution function. We consider the
system that evolves in discrete time over T periods. The main assumption that we make is that the travel time between
two locations connected by an arc is the same for all arcs. This assumption is not unreasonable when considering that
the problem is defined in discrete time. Therefore the Cartesian space can divided into hexagons in order to simplify
the problem so that the UAVs travel a uniform distance from node to node.

To illustrate the problem of interest consider the example in Fig. 1. The travel time of a vehicle between any two
nodes along an arc is one time unit. The state of the system at time t consists of the node location of all vehicles, the
number of travel units remaining for each vehicle, the location and status (arrived or not arrived) of any remaining
targets and the value of all targets. Additional targets may arrive according to some probability distribution. A vehicle
uses one move per time unit whether it moves or not. Vehicles can move only to locations that are connected to their
current location. The decision at each time step is whether to move or not and, if the vehicle moves, to what adjacent
location. Reward is received by colocating a vehicle with a task, whereupon that task is removed and the reward is
collected. The objective is to maximize the sum of the rewards collected by all vehicles. There is a finite number of
vehicles, each with a finite number of allowed moves.

Next, we define the notation and problem dynamics for modeling the uniform travel time problem. The notation
is adopted, in general, from the notation suggested in.7 The physical and temporal elements of the uniform travel
time problem are defined as follows:

T = the number of planning periods in the planning horizon.
T = {0, 1, . . . , T } = the times at which decisions are made.
J = the set of physical locations/nodes in the network.
Jt = the set of physical locations/nodes in the network where vehicles are located at time t .

Fig. 1 Another example of the one-step problem.

804

AHNER

Jt+1 = the set of physical locations/nodes in the network indexed by i and j where vehicles can move to at time
t + 1 given Jt .

There is a total of K vehicles in the system along with M potential tasks. Each location has either one task present
or a maximum of one task arriving but not both. Therefore, the K resources are never co-located so that each element
of the vectors defined below is either 0 or 1.

The resources are defined as:
Rit = the number of vehicles available at location i at time t . In uniform travel time problem Rit takes on the

values of 0 or 1.
Rt = the vector of vehicles over the set Jt .
Vehicles are represented as vectors since the number of vehicles is not typically large. Resources in7 can have

random times of arrival in the dynamic fleet management problem. In contrast to,7 no new vehicles enter the system
in this formulation of the uniform travel time problem. The number of tasks, however, can vary greatly in the system.
Tasks are defined as:

L̂it = the number of tasks that first become available at location i at time t . In uniform travel time problem L̂it

takes on the values of 0 or 1.
L̂t = the vector of tasks that arrive at time t .
Lt = the vector of tasks available at time t but before new arrivals in L̂t are added to the system.
L+

t = the set of all tasks available to be serviced at time t including new tasks that just arrived in this period.
L+

t = L̂t + Lt .
Le

t = the tasks that expire at time t because they were served.
IL
t = indicator function equal to 1 if task has not yet arrived and 0 otherwise.

Define a random variable L̂j (t) for each task arrival at location j at time t according to:

L̂j (t) =
{

1 if task j has arrived

0 otherwise
(17)

The arrivals of tasks are defined by a Markov chain as:

P(L̂j (t) = 1|L̂j (t − 1) = 1) = 1 (18)

P(L̂j (t) = 1|L̂j (t − 1) = 0) = pj (19)

P(L̂j (t) = 0|L̂j (t − 1) = 0) = 1 − pj (20)

These variables are mutually independent and the Markov property gives independence of the future evolution
given the present state.

Let Wt = L̂t represent the new tasks or information arriving in time period t . (Wt)
T
t=0 then becomes our stochastic

information process, with the realization Wt(ω) = ωt = L̂t (ω)

Our decisions are given by, for each t ∈ T and i, j ∈ J :

uijt =
{

1 if a vehicle is assigned from location i at time t to location j at time t + 1

0 otherwise

Define the costs as:
rit = the reward received at location i by vehicle k at time t when it leaves location i and there was a task present

at location i at time t . Note that the reward is received upon leaving a location that has a task present. rit = 0 is no
task is present.

805

AHNER

Let gt (ut) be the one-period reward function:

gt (ut) =
∑

i∈{Jt }

∑
j∈{Jt+1}

rituijt

= rT
t ut (21)

= the total profit gained from decisions made at time t

where ut is the specially formed vector accounting for the decision to move from node i ∈ {Jt } to all adjacent nodes
j ∈ {Jt+1} and rt is the corresponding reward vector.

Therefore, in this stochastic system the total reward to be maximized is

max
ut∈Ut

E

{
T∑

t=0

gt (ut)

}
(22)

subject to the dynamics of the system:

Rj,t+1 =
∑
i∈Jt

uijt, ∀j ∈ J , (23)

Lt+1(ω) = L+
t (ω) − Le

t , (24)

If only one vehicle can act on a task the following additional constraint is considered:

Rjt ≤ 1, ∀i ∈ Jt,j ∈ Jt+1 (25)

The dynamics of the system are shown in Fig. 2.
The change that the decision induces on the tasks available can be represented by L+

t = Lt − Le
t if no tasks expire

if not serviced. This is the set of tasks at time t after the decisions at time t have been carried out but before the arrival
of new tasks at time t . Similarly, the change that the decision induces on the vehicles’ locations can be represented
by Ru

t = Rt+1 because no new vehicles arrive at time t . Therefore, we define a post decision state:

Su
t = {Ru

t , L+
t , IL

t }
whereas the state of the decision at time t + 1, St+1 is typically defined in dynamic programming as

St+1 = {Rt+1, Lt+1, I
L
t }

which includes the effects from the dynamics of the decision made at time t on the vehicles’ locations plus the new
arrivals L̂t at time t .

Referring to the dynamics shown in Fig. 2, the problem begins with as initial state S0 = (R0, S0) from which
a decision u0 is made. This decision is implemented and the post-decision state Su

0 results. A reward g0 is gained
based upon the decision made. New tasks L̂0 arrive according to the Markov chain resulting in L+

0 . At time t = 1 the
decisions result in R1 because vehicles have moved but no tasks have entered or left the system. The vector of tasks
L1 = L+

0 − Le
0 because L+

0 accounts for the new tasks that have arrived and Le
0 are the tasks that have been serviced

in the previous time period. Note that g0 = 0 if no tasks are colocated with vehicles at time t = 0 and that gT is the
value for the tasks that are colocated with vehicles at the last time step.

Fig. 2 Dynamics of the one-step problem.

806

AHNER

Fig. 3 Network assignment problem.

The optimality equations for this problem are given by

J u
t−1(S

u
t−1) = Et {max

ut∈Ut

rtut + J u
t (Su

t)|Su
t−1} (26)

The future value-to-go function Et {J u
t (Su

t)} is unknown. As we did for the SWTA problem we will adaptively
estimate an approximate value function, J̃ u

t (Su
t) so we solve the following formulation

J u
t−1(S

u
t−1) = Et {max

ut∈Ut

rtut + J̃ u
t (Su

t)|Su
t−1} (27)

The approximate value function must be chosen so that it is simple enough to perform the calculations and update
quickly but that it also approximates the true value-to-go function values well.

We form the problem in equation (27) as a network problem. We refer to this problem as the primal problem
from which we will later obtain dual variables. The network problem is illustrated in Fig. 3. The network problem
is specially formed so that every node at which a UAV could be located is represented as a source node. The arcs
allow a UAV at a source node to be assigned to any adjacent node. While the network problem at first appears to be
an overly convoluted formulation, the special structure of this formulation, specifically the dual information gained
by the constraints, is used in the following sections to develop a simulation-based algorithm that iteratively learns
cost-to-go approximation information that can be used in adaptive dynamic programming to generate fast optimal
strategies.

The problem formulation for a given dynamic programming problem recursion at any time t using the linear
approximation J̃ u

t+1(S
u
t+1) = ξt+1u

k
t is given as

max
uk

t ∈U k
t

(rt + ξt+1)u
k
t

where k is the iteration of our algorithm introduced in the next section.
A vehicle flow feasibility constraint is needed to ensure that a vehicle flow u satisfies the conservation of vehicles

into and out of each node N . The constraint is∑
j |(i,j)∈A

uk
ij t −

∑
j |(j,i)∈A

uk
jit = bk

t (i) ∀i ∈ N, k ∈ K (28)

uk
ij t ∈ B ∀(i, j) ∈ A, k ∈ K (29)

where bk
t (i) is 1 if node i is a supply node in the network, 0 if node i is a transhipment node, and −1 if node i is a

demand node. B is the set of binary numbers. The values for bk
t (i) are set as Rit = bk

t (i) for the first M equations
representing the source flows, bk

t (i) = 0 for the next M flows from the first level to the second level and the sink is
represented by bk

t (M + M + 1) = − ∑M
i=1 Rit .

Equivalently, a matrix Nk
t is defined as the network routing matrix requiring that if vehicle k enters a node, it

must also leave that node. Each column (Nk
t)ij in the matrix corresponds to the variable uijt . The column of (Nk

t)i,j

807

AHNER

has a +1 in the ith row and a −1 in the j th row. Let bk
t = [bk

t (1), bk
t (2), . . . , bk

t (N)]. The rest of the entries are zero.
The feasible region U k

t at time t is defined as:

Nk
t uk

t = bk
t (30)

uk
ij t ∈ B ∀(i, j) ∈ A (31)

where Nk
t is referred to as the arc-incidence matrix.

Therefore the complete network problem for the dynamic recursion for a fixed algorithm iteration k is:

max
uk

t

(rk
t + ξk

t+1)
T uk

t (32)

subject to

Nk
t uk

t = bk
t (33)

uk
ij t ∈ B ∀(i, j) ∈ A (34)

V. Uniform Travel Time ADP Algorithm
A realization of task arrivals is taken according to the Markov chain in the previous section. Dependent on the

sample realization of the task arrivals at any stage

rij (t) =
{

Vj if task j has arrived and has not yet been serviced

0 otherwise

where Vj is the value of the arriving target.
The essence of Godfrey and Powell’s approach7 for this integer dynamic problem is that the stochastic optimization

problem can be solved by forming the dynamic programming recursion in terms of the post-decision state:

J u
t (St) = max

ut∈Ut

Ct (S
u
t−1, ωt−1, ut)) + Et

{
J u

t+1(S
u
t+1)

}
(35)

where the expectation is taken over all possible outcomes of Ŝt+1. Then by taking a single sample realization, the
expectation is dropped to form

Jt (St) = max
ut∈Ut

Ct (S
u
t−1, ωt−1, ut)) + J̃ u

t (Su
t) (36)

The Uniform Travel Time Adaptive Dynamic Programming Algorithm is:

STEP 0 Initialization: Initialize ξ 0
t = 0, t = 0, . . . , T , Set n = 0

STEP 1 Do while n ≤ N : Choose Wn = (Wn
0 , Wn

1 , . . . , Wn
T −1) ∈ � according to current state of the Markov chain

for each arriving task.
STEP 2 FORWARD PASS Do for t = 0, 1, . . . , T − 1:

2a Form the network problem of Equation to solve

arg max
un

t ∈Un
t

(rn
t + ξn

t+1)
T un

t

subject to its constraints to obtain un
t and the dual values πn

it , for i = 1, . . . , M

2b Update Rn
j,t+1 = un

ijt and Ln
t+1 = Ln

t + Wn
t − Le

t where

Le
jt =

{
1 if un

ijt and Ln+
j t = 1

0 otherwise

808

AHNER

2c Letting

αn = 1

1 + n

Update linear approximation. ξn+1
it = (1 − αn)ξn

it + αnπn
it , for i = 1, . . . , M if vehicle not present at

time t for node i.
If vehicle present at time t for node i update linear approximation by ξn+1

it = (1 − αn)ξn
it + αn(rk

t +
ξn
t+1), for i = 1, . . . , M since only one vehicle can be located at each node.

STEP 3 Return ξN

The distance constraints for the vehicles are satisfied since the feasible set is modified after solution of each
subproblem in the forward pass to include the determination of the reachable set of each vehicle.

In step 0 we initialize our linear estimate vector ξ 0
t . In step 1 we begin out loop for N iterations and choose

a new sample realization Wn = (Wn
0 , Wn

1 , . . . , Wn
T −1) for each iteration n. In step 2 for each time t we solve the

dynamic programming recursion using the current estimate ξn
t+1 for the value-to-go. We obtain the dual variables

πn
it , for i = 1, . . . , M where M is the number of nodes in the network from the XPressMP solver to update our

linear estimates. These dual variables are the shadow cost of having one more vehicle at each node at time t and
are therefore used to update ξn+1

t in step 2c that will be used in iteration n + 1. The state dynamics are in step 2b
to construct the problem for the dynamic programming recursion in time t + 1. In step 2c we update ξn+1

it using the
dual variables if a vehicle was not present at node i at time t or we update ξn+1

it with the actual contribution to the
objective function if a vehicle was located at node i at time t . This updated linear vector ξn+1

t is used in the n + 1
iteration of the algorithm. The algorithm returns to step 1 and repeats N times finally returning the linear matrix
for the value-to-go approximation ξN

t , t = 1, . . . , T . From this vector a decision for the next step of the stochastic
problem can be made.

A. Value Function Approximation
Unlike in the fleet management problems addressed by Godfrey and Powell,7 the UAV routing problem has few

vehicles that are traversing the network and these vehicles are constrained by their maximum travel time in the
system.

To simplify the value-to-go value function J̃
u,n
t (Su

t (ut)), we use a linear approximation

J̃ u
t (Su

t) = ξT
t ut (37)

where ξt is an estimate of the slope of J u
t with respect to the supply of UAVs. ξt is referred to as the vehicle gradient.

ut is the assignment decision vector
Using this linear value function approximation, our problem is

max
ut∈Ut

∑
i∈{Jt |Rit>0}

∑
j∈{Jt+1}

(rij t + ξn
j,t+1)uijt

The question remains how to obtain these linear estimates. We address this next.

B. Determining Subgradients
For the linear estimate, we would like to find the change in the approximate value-to-go value function, J̃ u

t (Su
t).

This can be done through looking at the integer problems subgradients as shown in this section.
Consider the following network formulation

F(u) = min cT u (38)

subject to

Nu = b (39)

u ≤ ub (40)

u ≥ 0 (41)

809

AHNER

where c is a vector of arc values, u is a vector of link flows, N is a standard node-incidence matrix and b is the vector
of node sources or sinks assume the convention

bi = flow out of node i − flow into node i

The vector u is the upper bound on the arcs. Let π be the vector of duals for the constraints 40 commonly called
node potentials in the literature and let v be the vector of duals for the constraints 41.

The dual πi is a subgradient of F(u∗) with respect to the right hand side of the constraints b and satisfies:

D−
i ≤ πi ≤ D+

i (42)

where D−
i and D+

i are the defined by considering the classical linear network problem 5.2-41.
Assume the linear network problem (5.2-41 has been solved. Consider the following perturbed problem:

Fi(u(ε)) = min
u(ε)

cT u(ε) (43)

subject to

Nu(ε) = b + εei (44)

u(ε) ≤ u (45)

u(ε) ≥ 0 (46)

where ei is a vector of zeros with a one for the row corresponding to node i.
Define directional derivatives D+

i and D−
i as:

D+
i = lim

ε→0+

Fi(u
∗(ε)) − F(u∗)

ε
(47)

and

D−
i = lim

ε→0−

Fi(u
∗(ε)) − F(u∗)

ε
(48)

The following result is shown in:11

Theorem 2. The vector of duals π is a subgradient of F(u∗) with respect to the right hand side vector b.

Proof : Let

z(b) = min
u

cT u = max{π,v} πT b + vT u (49)

Let {π∗, v∗} be the optimal duals for u∗ and let ū∗ and {π̄∗, v̄∗} be the optimal primal and dual solutions for the
problem with right hand side b̄. Then

z(b) − z(b̄) =
= [π∗Zb + v∗Zu] − [π̄∗Zb̄ + v̄∗Zu] (50)

≥ [π̄∗Zb + v̄∗Zu] − [π̄∗Zb̄ + v̄∗Zu] (51)

≥ π̄∗Z(b − b̄) (52)

where the first inequality follows since {π̄∗, v̄∗} are not necessarily optimal for the problem with vector b in lieu
of b̄.

810

AHNER

In this class of problems, it is easy for a current solution at iteration n, un, to find the duals, π , and calculate gt (u
n
t)

where n denotes the nth iteration of our algorithm.

vn
it =

⎧⎪⎨
⎪⎩

gt (u
n
t + 	i, ω

n
t) − gt (u

n
it , ω

n
t) if location i has not yet been serviced

gt (u
n
t , ω

n
t) − gt (u

n
t − 	i, ω

n
t) if location i has been serviced by un

t

0 otherwise

(53)

where 	i is the effect of adding one vehicle to location i.
However, it is very difficult to calculate the exact values of Egt (ut). Instead, using stochastic subgradient

techniques, the fact that vk
t satisfies

E
{
vk|uk

} ∈ δF (uk) (54)

where δF is the subdifferential of F is used to determine the stochastic subgradients. At current points un
t , n =

0, 1, . . . , random observations are taken, (ω0, . . . , ωt−1) and data obtained is used to calculate realizations of these
subgradients which correspond to exact subgradients only in the mean.

We are then interested in the dual values for the first M constraints on the set of equations Ntut = bt which
translate to the marginal value or shadow price of having one more resource at a given task location. We define these
dual values πi for the ith task location. The network problem is solved using XpressMp, at iteration n and time t the
dual values πn

it , i = 1, . . . , M are calculated and the estimated marginal values, ṽn
t are updated. At each iteration n,

a new set of flows, un, is realized. This creates a situation where estimates may vary considerably from one iteration
to the next. For this reason the estimates are smoothed according to

ṽn+1
it = (1 − αn)ṽn

it + αnπn
it (55)

where α ∈ (0, 1) is our smoothing factor so that the current value is averaged with the previous n iterations.
One choice for our linear estimate is

ξn
t = v̄n

t

Through this procedure the approximate value-to-go value function is updated for each task location for each
time step. Unlike approximate policy iteration where the value-to-go function is updated only for the current state,
use of the dual information provides that the value-to-go function value of all locations is updated. In other words,
approximate policy iteration updates occur as an OR operator. This OR operator means that the vehicle, from its
current state, can either transition to one state or another until all states are explored from its current position. Instead,
in our approach, we see what the effect would be at time t of a vehicle being at a location whether or not a vehicle can
actually be there at time t . In other words, our approach updates occur as an AND operator answering the question
of what one additional vehicle at each location would have on the objective function.

C. Convergence
For complicated problems such as the uniform travel time problem, convergence is much more difficult to prove

than the simpler discrete two-stage news vendor whose convergence is proven by Powell and Topaloglu13 under the
assumption that all slopes are sampled with positive probability. As of this writing, formal proofs of convergence do
not exist for this technique.

To obtain convergence the functional form of an approximation has to reasonably capture the true value function.
To do this, the structure of the problem needs to be exploited so that at each Monte Carlo simulation, a visit to one
state provides improved estimates of the value of visiting a large number of other states.

For future work, the proof of convergence most likely would follow a similar path of the research done on
quasi-gradient techniques by Ermoliev.6

D. Model Predictive Control
The term model predictive control does not designate a specific control strategy, but rather a method of using a

representative model, in this case the adaptive dynamic programming formulation, to obtain controls or decisions
for a short time period into the future. The model is representative of the current state and must be resolved when

811

AHNER

the state “changes significantly.” In the case of UAV planning and control under uncertainty of arrivals, an arriving
target could constitute a significant state change and require resolving the formulation. The real-time aspect of the
problem dictates that these problems be solvable in minutes within the model predictive control framework.

E. Experimentation and Results
We will consider two networks given in Figs. 4 and 5. We begin with Fig. 4 and consider a deterministic example

where vehicles are allowed two steps or moves. This example demonstrates how updating of the function value
occurs. The targets are at their locations starting at time 0 until they are instantaneously served upon being colocated
with a vehicle at which time the task leaves the system. The target values are given in Table 1. Each example starts
with two vehicles at node 0 in their respective networks.

The algorithm is run for 100 Monte Carlo samples, which are trivial in this case since all targets arrive with
probability 1, and an optimal objective value of 10021 is obtained. By inspection, this value is easily verified, but,
more importantly, we demonstrate how the answer was obtained and the fact that enough samples must be taken so
that the averaging converges.

The dual values of the first dynamic programming recursion are meaningless because ω0 has no meaning in the
value function approximation. Therefore, we begin by looking at the linear estimates derived from the dual values
of the second dynamic programming recursion that provide the linear estimates of the value-to-go function, J̃ , for
the first recursion. The dual values are considered only where there is not a vehicle. For nodes that have vehicles we
take the actual value that is realized in solving the dynamic programming recursion to update the linear estimate.

Fig. 4 Example of the one-step problem.

Fig. 5 Example 2 of the one-step problem.

812

AHNER

Table 1 Target values
for figure 4 example 1.

Node Value

0 0
1 10
2 10
3 1
4 10000
5 10
6 10

Table 2 Dual values for figure 4 example 1.

ξ0
1 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}

ξ1
1 = {0.0, 10.0, 0.0, 10000.0, 0.0, 10.0, 0.0}

ξ2
1 = {9.0, 10.0, 0.0, 10000.0, 0.0, 10.0, 9.0}

The linear estimates for the first three Monte Carlo samples are given in Table 2 where ξ i
j represents the estimates

after i Monte Carlo samples at the j dynamic programming recursion.
Interestingly, on the second Monte Carlo sample the optimal answer is obtained of 10021. At this point we could

conjecture that for a deterministic example of n steps, n Monte Carlo samples are needed to obtain an optimal answer
or n − 1 updates to the linear estimates are needed before an optimal answer. The linear estimate used in the second
Monte Carlo sample for the first dynamic programming recursion is ξ 1

1 and simply shows that if we send a vehicle
to node 3 then we would get the value at node 3 plus 10000.0. The value for the linear estimate of the value-to-go
for node 1 and node 5 is 10 from the actual realization of the assignment from the solution of the forward dynamic
programming recursion using ξ 0

1 . In the realization of this solution with objective value of 40 the two vehicles has
one vehicle first traveling to node 1 and the other vehicle first traveling to node 5. Then the vehicle at node 1 travels
to node 2 and the vehicle at node 5 travels to node 6. On the second Monte Carlo sample one vehicle travels the
path from node 0 to node 1 to node 2 while the other vehicle travels from node 0 to node 3 to node 4 for the optimal
objective value of 10021. On the following Monte Carlo samples this solution never changes for as the 1000 iterations
experimentally run.

Next for Example 2 we look at 4 step deterministic example in Figure 5 with values given in Table 3. Again,
all targets are at their locations starting at time 0 until they are instantaneously served upon being colocated with a
vehicle at which time the task leaves the system. The example starts with two vehicles at node 0.

Table 3 Target values
for figure 5 example 2.

Node Value

0 0
1 200
2 200
3 200
4 200
5 0
6 0
7 10000
8 200
9 200

10 200
11 200

813

AHNER

Table 4 Dual values for Fig. 5 example 2.

ξ1
1 = {0.0, 200.0, 200.0, 200.0, 200.0, 0.0, 10000.0, 0.0, 200.0, 200.0, 200.0, 200.0}

ξ1
2 = {0.0, 0.0, 200.0, 200.0, 200.0, 0.0, 10000.0, 0.0, 0.0, 200.0, 200.0, 200.0}

ξ1
3 = {0.0, 0.0, 200.0, 200.0, 0.0, 0.0, 10000.0, 0.0, 0.0, 200.0, 200.0, 0.0}

ξ2
1 = {0.0, 560.0, 380.0, 380.0, 380.0, 9000.0, 10000.0, 9000.0, 560.0, 380.0, 380.0, 380.0}

ξ2
2 = {0.0, 180.0, 560.0, 200.0, 380.0, 9000.0, 10000.0, 9000.0, 180.0, 560.0, 200.0, 380.0}

ξ2
3 = {0.0, 0.0, 200.0, 200.0, 0.0, 0.0, 10000.0, 0.0, 0.0, 200.0, 200.0, 0.0}

ξ3
1 = {145.8, 1175.6, 542.0, 542.0, 396.2, 9810.0, 17290.0, 9810.0, 14686.4, 542.0, 542.0, 396.2}

ξ3
2 = {0.0, 196.2, 592.4, 200.0, 396.2, 17910.0, 10000.0, 9810.0, 358.2, 430.4, 362.0, 396.2}

ξ3
3 = {0.0, 0.0, 200.0, 200.0, 0.0, 0.0, 10000.0, 0.0, 162.0, 200.0, 200.0, 162.0}

The algorithm is run for 100 Monte Carlo samples, which are trivial in this case since all targets arrive with
probability 1, and an optimal objective value of 11000 is obtained. We note that the optimal solution is obtained after
4 Monte Carlo samples or 3 updates of the estimates and the solution does not change for the remaining 97 iterations.

We begin by looking at the linear estimates derived from the dual values of the second dynamic programming
recursion that provide the linear estimates of the value-to-go function, J̃ , for the first recursion and continue our
analysis through the linear estimates of the third dynamic programming recursion. The linear estimates for the second
through third time steps and the second through fourth Monte Carlo samples are given in Table 4 where ξ i

j represents
the estimates after i Monte Carlo samples at the j dynamic programming recursion.

The updates build upon each other so that the first three linear approximation vectors after the first Monte Carlo
approximation ξ 1

j are the one-step value-to-go values. The second three linear approximation vectors after the second
Monte Carlo approximations ξ 2

j are the two-step value-to-go values scaled by the averaging factor α = .9. Thus the
value-to-go functions build up to indicate the value-to-go from a given location at a given time dependent on the
locations that were visited in earlier recursions since those task values will no longer be present.

In our next example we depart from the solely deterministic arrivals and have the arrival at node 7 follow a Markov
chain with probability of arrival at each time period of p if the target has not yet arrived and 0 otherwise. We vary
p to find the threshold for which the decision changes for a 4 time step problem with 2 vehicles starting at node 0.
We make a decision for the first time step after 1000 Monte Carlo samples, then for the problem with 3 time steps
remaining we run another 1000 Monte Carlo samples and make a decision. We continue until no time steps remain.

For values of p < .02 the solution is vehicle 1 traveling the sequence {0−1−2−3−4} and vehicle 2 traveling the
sequence {0−8−9−11−10} for an objective value of 1600. The solution never changes since the optimal solution
is the greedy solution. When p > .02 the solution becomes vehicle 1 traveling the sequence {0−1−5−6−7} and
vehicle 2 traveling the sequence {0−8−9−11−10} for an average objective value that is greater than 1600 dependent
on the value of p. For p = .021 the algorithm required 284.2 seconds and 298 iterations to converge to the optimal
solution. For p = .025 the algorithm require 204.7 seconds and 212 iterations to converge to the optimal solution.

These results follow from the fact that we would expect the decision to change when the task at node 7 arrives
significantly often in our Monte Carlo samples. This example demonstrates the effectiveness of this technique to
stochastic arrivals of tasks. The critical decision in the sequence for this example is made after the first decision in
the sequence since the sequence for vehicle 1 is always identical. Therefore only three time steps are remaining when
the critical decision must be made. The decision would change when, on average, a value of 600 or more is present
at node 7. If we calculate this value analytically for our Markov chain we set

1 − (1 − p)3 = .06 (56)

and solve to obtain p = .0204139. Our simulation results therefore is consistent with the analytical solution.
Since convergence is not proven we conduct this last experiment again but with the initial estimates set to an upper

bound of 20,000, greater than the sum of all target arrivals. We find that once again the algorithm behaves correctly
and our simulation remains consistent with the analytical solution. Finally, we set the initial estimates randomly

814

AHNER

between 0 and 100,000 and run the experiment again for 100 differing starting estimates and find that our simulation
results remain consistent with the analytical solution.

VI. Conclusion
Approaching the UAV routing problem using Adaptive Dynamic Programming offers a tractable framework in

which to solve these difficult problems. A post-dynamic programming formulation offers a framework in which, after
only a few iterations, the functional approximations for the cost-to-go functions represent a value closer to reality.
While greater solution times will be needed, the use of more complex functional estimates and larger networks appear
to offer solutions that better account for uncertainty.

Acknowledgments
I am grateful for the guidance of Professor David Castañón of Boston University and Dr. Stephan Kolitz of the

Charles Stark Draper Laboratory for their guidance and encouragement in developing this work as part of my graduate
studies.

References
1Richard E. Bellman, Dynamic Programming, Princeton University Press, 1957.
2Dimitris Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific, 1995.
3Dimitris Bertsekas, Benjamin Van Roy, Yuchun Lee, and John Tsitsiklis, “A Neuro-Dynamic Programming Approach to

Retailer Inventory Management,” In Proceedings of the 36th IEEE Conference on Decision and Control, Vol. 4, pp. 4052–4057,
1997.

4Dimitris Bertsekas and John Tsitsiklis, Neuro-Dynamic Programming. Athena Scientific, 1996.
5William B. Carlton, A Tabu Search to the General Vehicle Routing Problem. A PhD dissertation, University of Texas, Austin

TX, 1995.
6Gambardella, L.M., Taillard, E. and Agazzi, G. Numerical Techniques for Stochastic Optimization, chapter Stochastic

Quasigradient Techniques, Springer-Verlang, 1988.
7Gregory Godfrey and Warren Powell. “An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I:

Single Period Travel Times,” Transportation Science, Vol. 36, pp. 21–39, 2002.
8Gregory Godfrey, Warren Powell, Tassio Carvalho, and Hugo Simao. “Dynamic Fleet Management as a Logistics Queueing

Network,” Annals of Operations research, Vol. 61, pp. 165–188, 1995.
9Katerina P. Papadaki and Warren B. Powell, “A Monotone Adaptive Dynamic Programming Algorithm for a Stochastic Batch

Service Problem,” European journal of Operations Research, Vol. 142, pp. 108–127, 2002.
10Katerina P. Papadaki and Warren B. Powell, “An Adaptive Dynamic Programming Algorithm for a Stochastic Multiproduct

Batch Dispatch Problem,” Naval Research Logistics, Vol. 50, pp. 742–769, 2003.
11Warren B. Powell, “A Review of Sensitivity Results for Linear Networks and a New Approximation to Reduce the Effects

of Degeneracy,” Transportation Science, Vol. 23, pp. 231–243, 1989.
12Warren B. Powell and Tassio A. Carvalho, “Dynamic Control of Logistics Queueing Networks for Large-scale Feel

Management,” Transportation Science, Vol. 32, pp. 161–175, 1998.
13Warren B. Powell and Huseyin Topaloglu, “An Algorithm for Approximating Piecewise Linear Concave Functions from

Sample Gradients,” Operations Research Letters, Vol. 31, pp. 67–76, 2003.
14Marius M. Sisson, “Applying Tabu Search to Wind Influenced, Minimum Risk, and Maximum Expected Coverage Risk.”

M.S. thesis, Air Force Institute of Technology, Wright-Patterson AFB OH, 1997.
15Warren B. Powell and Michael Z. Spivey, “The DynamicAssignment Problem,” Transportation Science,Vol. 38, pp. 399–419,

2004.
16Martin L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, 1994.

James Neidhoefer
Associate Editor

815

